1,352 research outputs found

    Learning Deep Belief Networks from Non-Stationary Streams

    No full text
    Deep learning has proven to be beneficial for complex tasks such as classifying images. However, this approach has been mostly applied to static datasets. The analysis of non-stationary (e.g., concept drift) streams of data involves specific issues connected with the temporal and changing nature of the data. In this paper, we propose a proof-of-concept method, called Adaptive Deep Belief Networks, of how deep learning can be generalized to learn online from changing streams of data. We do so by exploiting the generative properties of the model to incrementally re-train the Deep Belief Network whenever new data are collected. This approach eliminates the need to store past observations and, therefore, requires only constant memory consumption. Hence, our approach can be valuable for life-long learning from non-stationary data streams. © 2012 Springer-Verlag

    Plant Immune Responses: Aphids Strike Back.

    Get PDF
    To survive and complete their life cycle, herbivorous insects face the difficult challenge of coping with the arsenal of plant defences. A new study reports that aphids secrete evolutionarily conserved cytokines in their saliva to suppress host immune responses

    Invasive candidiasis as a cause of sepsis in the critically ill patient.

    Get PDF
    Invasive fungal infections are an increasingly frequent etiology of sepsis in critically ill patients causing substantial morbidity and mortality. Candida species are by far the predominant agent of fungal sepsis accounting for 10% to 15% of health-care associated infections, about 5% of all cases of severe sepsis and septic shock and are the fourth most common bloodstream isolates in the United States. One-third of all episodes of candidemia occur in the intensive care setting. Early diagnosis of invasive candidiasis is critical in order to initiate antifungal agents promptly. Delay in the administration of appropriate therapy increases mortality. Unfortunately, risk factors, clinical and radiological manifestations are quite unspecific and conventional culture methods are suboptimal. Non-culture based methods (such as mannan, anti-mannan, β-d-glucan, and polymerase chain reaction) have emerged but remain investigational or require additional testing in the ICU setting. Few prophylactic or pre-emptive studies have been performed in critically ill patients. They tended to be underpowered and their clinical usefulness remains to be established under most circumstances. The antifungal armamentarium has expanded considerably with the advent of lipid formulations of amphotericin B, the newest triazoles and the echinocandins. Clinical trials have shown that the triazoles and echinocandins are efficacious and well tolerated antifungal therapies. Clinical practice guidelines for the management of invasive candidiasis have been published by the European Society for Clinical Microbiology and Infectious Diseases and the Infectious Diseases Society of North America

    Effects of magnetism and doping on the electron-phonon coupling in BaFe2_{2}As2_{2}

    Full text link
    We calculate the effect of local magnetic moments on the electron-phonon coupling in BaFe2_{2}As2+δ_{2}+\delta using the density functional perturbation theory. We show that the magnetism enhances the total electron-phonon coupling by 50\sim 50%, up to λ0.35\lambda \lesssim 0.35, still not enough to explain the high critical temperature, but strong enough to have a non-negligible effect on superconductivity, for instance, by frustrating the coupling with spin fluctuations and inducing order parameter nodes. The enhancement comes mostly from a renormalization of the electron-phonon matrix elements. We also investigate, in the rigid band approximation, the effect of doping, and find that λ\lambda versus doping does not mirror the behavior of the density of states; while the latter decreases upon electron doping, the former does not, and even increases slightly.Comment: 4 pages, 3 figure

    Bench-to-bedside review: Candida infections in the intensive care unit.

    Get PDF
    Invasive mycoses are life-threatening opportunistic infections and have emerged as a major cause of morbidity and mortality in critically ill patients. This review focuses on recent advances in our understanding of the epidemiology, diagnosis and management of invasive candidiasis, which is the predominant fungal infection in the intensive care unit setting. Candida spp. are the fourth most common cause of bloodstream infections in the USA, but they are a much less common cause of bloodstream infections in Europe. About one-third of episodes of candidaemia occur in the intensive care unit. Until recently, Candida albicans was by far the predominant species, causing up to two-thirds of all cases of invasive candidiasis. However, a shift toward non-albicans Candida spp., such as C. glabrata and C. krusei, with reduced susceptibility to commonly used antifungal agents, was recently observed. Unfortunately, risk factors and clinical manifestations of candidiasis are not specific, and conventional culture methods such as blood culture systems lack sensitivity. Recent studies have shown that detection of circulating beta-glucan, mannan and antimannan antibodies may contribute to diagnosis of invasive candidiasis. Early initiation of appropriate antifungal therapy is essential for reducing the morbidity and mortality of invasive fungal infections. For decades, amphotericin B deoxycholate has been the standard therapy, but it is often poorly tolerated and associated with infusion-related acute reactions and nephrotoxicity. Azoles such as fluconazole and itraconazole provided the first treatment alternatives to amphotericin B for candidiasis. In recent years, several new antifungal agents have become available, offering additional therapeutic options for the management of Candida infections. These include lipid formulations of amphotericin B, new azoles (voriconazole and posaconazole) and echinocandins (caspofungin, micafungin and anidulafungin)

    Peripheral and central mechanisms involved in hormonal control of male and female reproduction

    Get PDF
    Reproduction involves the integration of hormonal signals acting across multiple systems togenerate a synchronized physiological output. A critical component of reproduction is the luteinizinghormone (LH) surge, which is mediated by estradiol (E2) and neuroprogesterone interacting tostimulate kisspeptin release in the rostral periventricular nucleus of the third ventricle in rats. Recentevidence has shown that both classical and membrane E2 and progesterone signaling is involved inthis pathway. A metabolite of gonadotropin-releasing hormone (GnRH), GnRH-(1-5), has been shownto stimulate GnRH expression, secretion, and has a role in the regulation of lordosis. Additionally,gonadotropin-inhibitory hormone (GnIH) projects to and influences the activity of GnRH neurons inbirds. Stress-induced changes in GnIH have been shown to alter breeding behaviors in birds,demonstrating another molecular control of reproduction. Peripherally, paracrine and autocrineactions within the gonad have been suggested as therapeutic targets for infertility in both males andfemales. Dysfunction of testicular prostaglandin synthesis is a possible cause of idiopathic maleinfertility. Indeed, local production of melatonin and corticotropin-releasing hormone (CRH) couldinfluence spermatogenesis via immune pathways in the gonad. In females, vascular endothelialgrowth factor A (VEGF-A) has been implicated in an angiogenic process that mediates developmentof the corpus luteum and thus fertility via the Notch signaling pathway. Age-induced decreases infertility involve ovarian kisspeptin and its regulation of ovarian sympathetic innervation. Finally,morphological changes in the arcuate nucleus of the hypothalamus influence female sexualreceptivity in rats. The processes mediating these morphological changes have been shown toinvolve rapid effects of E2 controlling synaptogenesis in this hypothalamic nucleus. Together, thisreview highlights new research in these areas, focusing on recent findings in the molecularmechanisms of central and peripheral hormonal control of reproduction.Fil: Rudolph, L. M.. University of California at Los Angeles; Estados UnidosFil: Bentley, G. E.. University of California Berkeley; Estados UnidosFil: Calandra, Ricardo Saul. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; ArgentinaFil: Paredes, A. H.. Universidad de Chile; ChileFil: Tesone, Marta. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; ArgentinaFil: Wu, T. J.. Uniformed Services University; Estados UnidosFil: Micevych, P. E.. University of California at Los Angeles; Estados Unido

    Antibodies to Lipopolysaccharides after Immunization of Humans with the Rough Mutant Escherichia coli J5

    Get PDF
    To investigate whether immunization with Escherichia coli J5 boiled cells induces antibodies directed at deep core structures, antibodies against JS lipopolysaccharide (LPS), Re LPSt and Iipid A were measured in the serum of 70 volunteers before and 2 weeks after immunization. To improve the sensitivity and the specificity ofELISAt complexes of core LPS with high-density lipoproteins were used instead of free core LPS as antigens. A median three-fold increase in antibodies directed against J5 LPS was observed, but no significant increase in the antibodies against Re LPS or lipid A was found. Since JS antiserum did not react with several smooth LPS or with Re LPS and lipid At cross-reactivity could not be demonstrated. Thus, immunization of volunteers with E. coli J5 produced a modest specific antibody response against J5 LPS. The mechanism of protection previously observed with J5 antiserum remains unclea

    Effects of phase transitions in devices actuated by the electromagnetic vacuum force

    Full text link
    We study the influence of the electromagnetic vacuum force on the behaviour of a model device based on materials, like germanium tellurides, that undergo fast and reversible metal-insulator transitions on passing from the crystalline to the amorphous phase. The calculations are performed at finite temperature and fully accounting for the behaviour of the material dielectric functions. The results show that the transition can be exploited to extend the distance and energy ranges under which the device can be operated without undergoing stiction phenomena. We discuss the approximation involved in adopting the Casimir expression in simulating nano- and micro- devices at finite temperature
    corecore